Non-invasive measurement of cardiac output using an iterative, respiration-based method.
نویسندگان
چکیده
BACKGROUND Current non-invasive respiratory-based methods of measuring cardiac output [Formula: see text] make doubtful assumptions and encounter significant technical difficulties. We present a new method using an iterative approach [Formula: see text], which overcomes limitations of previous methods. METHODS Sequential gas delivery (SGD) is used to control alveolar ventilation [Formula: see text] and CO2 elimination [Formula: see text] during a continuous series of iterative tests. Each test consists of four breaths where inspired CO2 [Formula: see text] is controlled; raising end-tidal Pco2 [Formula: see text] by about 1.33 kPa (10 mm Hg) for the first breath, and then maintaining [Formula: see text] constant for the next three breaths. The [Formula: see text] required to maintain [Formula: see text] constant is calculated using the differential Fick equation (DFE), where [Formula: see text] is the only unknown and is arbitrarily assumed for the first iteration. Each subsequent iteration generates measures used for calculating [Formula: see text] by the DFE, refining the assumption of [Formula: see text] for the next test and converging it to the true [Formula: see text] when [Formula: see text] remains constant during the four test breaths. We compared [Formula: see text] with [Formula: see text] measured by bolus pulmonary artery thermodilution [Formula: see text] in seven pigs undergoing liver transplantation. RESULTS [Formula: see text] implementation and analysis was fully automated, and [Formula: see text] varied from 0.6 to 5.4 litre min(-1) through the experiments. The bias (between [Formula: see text] and [Formula: see text]) was 0.2 litre min(-1) with 95% limit of agreement from -1.1 to 0.7 litre min(-1) and percentage of error of 32%. During acute changes of [Formula: see text], convergence of [Formula: see text] to actual [Formula: see text] required only three subsequent iterations. CONCLUSIONS [Formula: see text] measurement is capable of providing an automated semi-continuous non-invasive measure of [Formula: see text].
منابع مشابه
Non-invasive measurement of cardiac output using an iterative, respiratory-based method
Editor’s key points † Current non-invasive monitors of cardiac output suffer from significant practical limitations. † A novel respiratory-based method involving sequential gas delivery to control alveolar ventilation is described and compared with bolus pulmonary artery thermodilution. † This novel method was validated in a porcine model of liver transplantation, and is therefore a promising a...
متن کاملPresentation of a Non-invasive Method of Estimating Arterial Stiffness by Modeling Blood Flow and Arterial Wall Based on the Determination of Elastic Module of Arterial Wall
Introduction: Arterial stiffness is an important predictor of cardiovascular risk. Several indices have been introduced to estimate the arterial stiffness based on the changes in the brachial blood pressure. Since the substitution of the blood pressure changes in the central arteries such as carotid with the blood pressure changes in the brachial results in error in the blood...
متن کاملمانیتورینگ همودینامیک به روش غیر تهاجمی در بخش مراقبت های ویژه: مقاله مروری
Aim and background : Hemodynamic monitoring of critical patients in intensive units is the cornstone of care. It constitutes an extensive part of care and is helpful in determination of the causes and the response to treatment of hemodynamic instability. Aim of this review articale is to investigate of the Non invasive hemodynamic monitoring in critical care units. Materials and Methods:61 art...
متن کاملNon-invasive estimation of cardiac wall stress by using tissue doppler-echocardiography ultrasound images: People with coronary artery stenosis
In this study, a method for non-invasive estimation of stress on the heart wall in the diastole phase is presented using ultrasound echocardiography and tissue Doppler imaging. The aim of this study was to evaluate the stress on the heart wall as a pre-diagnosis to identify people with coronary artery stenosis. 29 patients with stenosis of more than 70%, 30 patients with stenosis of 50 to 7...
متن کاملA System for Continuous Estimating and Monitoring Cardiac Output via Arterial Waveform Analysis
Background: Cardiac output (CO) is the total volume of blood pumped by the heart per minute and is a function of heart rate and stroke volume. CO is one of the most important parameters for monitoring cardiac function, estimating global oxygen delivery and understanding the causes of high blood pressure. Hence, measuring CO has always been a matter of interest to researchers and clinicians. Sev...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- British journal of anaesthesia
دوره 114 3 شماره
صفحات -
تاریخ انتشار 2015